In today’s fast-paced digital world, creating personalized experiences for customers is essential. One of the most effective ways to achieve this is through a Product Recommender System . By using Data Science , we can build systems that not only predict what users may like but also optimize sales and engagement. Here's how we can leverage ETL from Oracle , SQL , Python , and deploy on AWS to create an advanced recommender system. Steps to Build the Best Product Recommender System: 1. ETL Process with Oracle SQL The foundation of any data-driven model starts with collecting clean and structured data. ETL (Extract, Transform, Load) processes from an Oracle Database help us extract relevant product, customer, and transaction data. SQL Query Example to Extract Data: SELECT product_id, customer_id, purchase_date, product_category, price FROM sales_data WHERE purchase_date BETWEEN '2023-01-01' AND '2023-12-31'; This query fetches historical sales data, includin...
AI Councel Lab is a space for exploring Data Science and AI through hands-on projects and innovative solutions. Learn, build, and create using cutting-edge AI technology while mastering data science concepts. Join us in transforming ideas into impactful creations with AI!